Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 638
Filtrar
1.
Funct Plant Biol ; 512024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38669461

RESUMO

Chlorophyll a fluorescence parameters related to PSII photochemistry, photoprotection and photoinhibition were investigated in four C3 plant species growing in their natural habitat: Prosopis juliflora ; Abutilon indicum ; Salvadora persica ; and Phragmites karka . This study compared the light reaction responses of P. juliflora , an invasive species, with three native co-existing species, which adapt to varying water deficit and high salt stress. Chlorophyll a fluorescence quenching analyses revealed that P. juliflora had the highest photochemical quantum efficiency and yield, regulated by higher fraction of open reaction centres and reduced photoprotective energy dissipation without compromising the integrity of photosynthetic apparatus due to photoinhibition. Moreover, the elevated values of parameters obtained through polyphasic chlorophyll a fluorescence induction kinetics, which characterise the photochemistry of PSII and electron transport, highlighted the superior performance index of energy conservation in the transition from excitation to the reduction of intersystem electron carriers for P. juliflora compared to other species. Enhanced pigment contents and their stoichiometry in P. juliflora apparently contributed to upregulating fluxes and yields of energy absorbance, trapping and transport. This enhanced photochemistry, along with reduced non-photochemical processes, could explain the proclivity for invasion advantage in P. juliflora across diverse stress conditions.


Assuntos
Clorofila A , Clorofila , Complexo de Proteína do Fotossistema II , Prosopis , Prosopis/efeitos dos fármacos , Prosopis/química , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Estresse Salino/efeitos dos fármacos , Plantas Tolerantes a Sal/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Espécies Introduzidas , Fluorescência
2.
Ying Yong Sheng Tai Xue Bao ; 35(3): 721-730, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646760

RESUMO

Metal nanoparticles could be accumulated in soils, which threatens the ecological stability of crops. Investigating the effects of cuprous oxide nanoparticles (Cu2O-NPs) on photosystem Ⅱ (PSⅡ) of wheat seedling leaves holds considerable importance in comprehending the implications of Cu2O-NPs on crop photosynthesis. Following the hydroponic method, we investigated the effects of 0, 10, 50, 100, and 200 mg·L-1 Cu2O-NPs on chlorophyll fluorescence induction kinetics and photosynthetic-related genes in wheat seedlings of "Zhoumai 18". The results showed that, with the increases of Cu2O-NPs concentrations, chlorophyll contents in wheat leaves decreased, and the standardization of the OJIP curve showed a clearly K-phase (ΔK>0). Cu2O-NPs stress increased the parameters of active PSⅡ reaction centers, including the absorption flux per active RC (ABS/RC), the trapping flux per active RC (TRo/RC), the electron transport flux per active RC (ETo/RC), and the dissipation flux per active RC (DIo/RC). Cu2O-NPs stress decreased the parameters of PSⅡ energy distribution ratio including the maximum quantum yield of PSⅡ (φPo), the quantum yield of electron transport from QA (φEo), and the probability that a trapped exciton moved an electron further than QA (Ψo), while increased the quantum ratio for heat dissipation (φDo). Moreover, there was a decrease in photosynthetic quantum yield Y(Ⅱ), photochemical quenching coefficient (qP), net photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) of leaves with the increases of Cu2O-NPs concentration. Under Cu2O-NPs stress, the expression levels of genes which included PSⅡ genes (PsbD, PsbP, Lhcb1), Rubisco large subunit genes (RbcL), cytochrome b6/f complex genes (PetD, Rieske), and ATP synthase genes (AtpA, AtpB, AtpE, AtpI) were downregulated. These results indicated that Cu2O-NPs stress altered the activity and structure of PSⅡ in wheat seedlings, affected the activity of PSⅡ reaction centers, performance parameters of PSⅡ donor and acceptor sides. PSⅡ related genes were downregulated and exhibited significant concentration effects.


Assuntos
Clorofila , Cobre , Nanopartículas Metálicas , Fotossíntese , Complexo de Proteína do Fotossistema II , Plântula , Triticum , Triticum/metabolismo , Triticum/genética , Cobre/toxicidade , Clorofila/metabolismo , Plântula/metabolismo , Plântula/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/efeitos dos fármacos , Fluorescência , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Cinética
3.
Artigo em Inglês | MEDLINE | ID: mdl-38643813

RESUMO

Antibiotics are ubiquitously present in aquatic environments, posing a serious ecological risk to aquatic ecosystems. However, the effects of antibiotics on the photosynthetic light reactions of freshwater algae and the underlying mechanisms are relatively less understood. In this study, the effects of 4 representative antibiotics (clarithromycin, enrofloxacin, tetracycline, and sulfamethazine) on a freshwater alga (Chlorella pyrenoidosa) and the associated mechanisms, primarily focusing on key regulators of the photosynthetic light reactions, were evaluated. Algae were exposed to different concentrations of clarithromycin (0.0-0.3 mg/L), enrofloxacin (0.0-30.0 mg/L), tetracycline (0.0-10.0 mg/L), and sulfamethazine (0.0-50.0 mg/L) for 7 days. The results showed that the 4 antibiotics inhibited the growth, the photosynthetic pigment contents, and the activity of antioxidant enzymes. In addition, exposure to clarithromycin caused a 118.4 % increase in malondialdehyde (MDA) levels at 0.3 mg/L. Furthermore, the transcripts of genes for the adenosine triphosphate (ATP) - dependent chloroplast proteases (ftsH and clpP), genes in photosystem II (psbA, psbB, and psbC), genes related to ATP synthase (atpA, atpB, and atpH), and petA (related to cytochrome b6/f complex) were altered by clarithromycin. This study contributes to a better understanding of the risk of antibiotics on primary producers in aquatic environment.


Assuntos
Antibacterianos , Chlorella , Fotossíntese , Poluentes Químicos da Água , Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Fotossíntese/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Poluentes Químicos da Água/toxicidade , Tetraciclina/farmacologia , Tetraciclina/toxicidade , Claritromicina/farmacologia , Enrofloxacina/farmacologia , Enrofloxacina/toxicidade , Sulfametazina/toxicidade , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Luz , Clorofila/metabolismo
4.
J Plant Physiol ; 295: 154222, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484685

RESUMO

Plant hormones such as ethylene (ET) and salicylic acid (SA) have an elementary role in the regulation of ER stress and unfolded protein response (UPR) in plants via modulating defence responses or inducing oxidative stress. Chloroplasts can be sources and targets of reactive oxygen species (ROS) that affect photosynthetic efficiency, which has not been investigated under tunicamycin (Tm)-induced ER stress. In this study, the direct and indirect effects of Tm on chloroplastic ROS production were first investigated in leaves of wild-type tomato (Solanum lycopersicum L.) plants. Secondly changes in activities of photosystem II and I were analysed under Tm exposure and after application of the chemical chaperone 4-phenylbutyrate (PBA) in different genotypes, focusing on the regulatory role of SA and ET Tm treatments significantly but indirectly induced ROS production in tomato leaves and in parallel it decreased the effective quantum yield of PSII [Y(II)] and PSI [Y(I)], as well as the photochemical quenching coefficient (qP) and the quantum yield of non-photochemical energy dissipation in PSI due to acceptor-side limitation [Y(NA)]. At the same time, Tm increased non-photochemical quenching (NPQ) and cyclic electron flow (CEF) in tomato leaves after 24 h. However, the photosynthetic activity of the SA hydroxylase-overexpressing NahG tomato plants was more severely affected by Tm as compared to wild-type and ET-insensitive Never ripe (Nr) plants. These results suggest the protective role of SA in the regulation of photosynthetic activity contributing to UPR and the survival of plants under ER stress. Interestingly, the activation of photoprotective mechanisms by NPQ was independent of SA but dependent on active ET signalling under ER stress, whereas CEF was reduced by ET due to its higher ratio in Nr plants.


Assuntos
Solanum lycopersicum , Tunicamicina/farmacologia , Tunicamicina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Fotossíntese/fisiologia , Etilenos/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Luz
5.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475037

RESUMO

To reveal the impact of cadmium stress on the physiological mechanism of lettuce, simultaneous determination and correlation analyses of chlorophyll content and photosynthetic function were conducted using lettuce seedlings as the research subject. The changes in relative chlorophyll content, rapid chlorophyll fluorescence induction kinetics curve, and related chlorophyll fluorescence parameters of lettuce seedling leaves under cadmium stress were detected and analyzed. Furthermore, a model for estimating relative chlorophyll content was established. The results showed that cadmium stress at 1 mg/kg and 5 mg/kg had a promoting effect on the relative chlorophyll content, while cadmium stress at 10 mg/kg and 20 mg/kg had an inhibitory effect on the relative chlorophyll content. Moreover, with the extension of time, the inhibitory effect became more pronounced. Cadmium stress affects both the donor and acceptor sides of photosystem II in lettuce seedling leaves, damaging the electron transfer chain and reducing energy transfer in the photosynthetic system. It also inhibits water photolysis and decreases electron transfer efficiency, leading to a decline in photosynthesis. However, lettuce seedling leaves can mitigate photosystem II damage caused by cadmium stress through increased thermal dissipation. The model established based on the energy captured by a reaction center for electron transfer can effectively estimate the relative chlorophyll content of leaves. This study demonstrates that chlorophyll fluorescence techniques have great potential in elucidating the physiological mechanism of cadmium stress in lettuce, as well as in achieving synchronized determination and correlation analyses of chlorophyll content and photosynthetic function.


Assuntos
Cádmio , Lactuca , Complexo de Proteína do Fotossistema II/metabolismo , Fluorescência , Fotossíntese , Clorofila , Plântula , Folhas de Planta/metabolismo
6.
Pest Manag Sci ; 80(1): 133-148, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37103431

RESUMO

BACKGROUND: Bioherbicides are becoming more attractive as safe weed control tools towards sustainable agriculture. Natural products constitute an important source chemicals and chemical leads for discovery and development of novel pesticide target sites. Citrinin is a bioactive compound produced by fungi of the genera Penicillium and Aspergillus. However, its physiological-biochemical mechanism as a phytotoxin remains unclear. RESULTS: Citrinin causes visible leaf lesions on Ageratina adenophora similar to those produced by the commercial herbicide bromoxynil. Phytotoxicity bioassay tests using 24 plant species confirmed that citrinin has a broad activity spectrum and therefore has potential as a bioherbicide. Based on chlorophyll fluorescence studies, citrinin mainly blocks PSII electron flow beyond plastoquinone QA at the acceptor side, resulting in the inactivation of PSII reaction centers. Furthermore, molecular modeling of citrinin docking to the A. adenophora D1 protein suggests that it binds to the plastoquinone QB site by a hydrogen bond between the O1 hydroxy oxygen atom of citrinin and the histidine 215 of the D1 protein, the same way as classical phenolic PSII herbicides do. Finally, 32 new citrinin derivatives were designed and sorted according to free energies on the basis of the molecular model of an interaction between the citrinin molecule and the D1 protein. Five of the modeled compounds had much higher ligand binding affinity within the D1 protein compared with lead compound citrinin. CONCLUSION: Citrinin is a novel natural PSII inhibitor that has the potential to be developed into a bioherbicide or utilized as a lead compound for discovery of new derivatives with high herbicidal potency. © 2023 Society of Chemical Industry.


Assuntos
Citrinina , Herbicidas , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/química , Plastoquinona/metabolismo , Herbicidas/farmacologia , Herbicidas/metabolismo , Controle de Plantas Daninhas
7.
Plant Physiol Biochem ; 203: 108065, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37797385

RESUMO

Microplastics (MPs) and cadmium (Cd) has attracted increasing attention due to their combined toxicity to terrestrial vegetation. Photosynthesis which utilizes light energy to synthesize organic substances is crucial for crop production. However, the plant photosynthetic response to the joint toxicity of MPs and Cd is still unknown. Here, we studied the effects of polyethylene (PE) MPs on the photosynthetic performance of two maize cultivars Xianyu 335 (XY) and Zhengdan 958 (ZD) grown in a Cd contaminated soil. Results showed that the leaf Cd concentration in XY and ZD reached 26.1 and 31.9 µg g-1, respectively. PE-MPs did not influence the leaf Cd content, but posed direct and negative effects on photosynthesis by increasing the malondialdehyde content, reducing the chlorophyll content, inhibiting photosynthetic capacity, disrupting the PSII donor side, blocking electron transfer in different photosystems, and suppressing the oxidation and reduction states of PSI. Transcriptomic analysis revealed that the inhibitory effect of combined PE-MPs and Cd on maize photosynthesis was attributed to suppressed expression of the genes encoding PSII, PSI, F-type ATPase, cytochrome b6/f complex, and electron transport between PSII and PSI. Using WGCNA, we identified a MEturquoise module highly correlated with photosynthetic traits. Hub genes bridging carbohydrate metabolism, amino acid metabolism, lipid metabolism, and translation provided the molecular mechanisms of PE-MPs and Cd tolerance in maize plants. The comprehensive information on the phytotoxicity mechanisms of Cd stress in the presence or absence of PE-MPs on the photosynthesis of maize is helpful for cloning Cd and PE-MP resistance genes in the future.


Assuntos
Cádmio , Zea mays , Cádmio/metabolismo , Zea mays/metabolismo , Microplásticos/metabolismo , Microplásticos/farmacologia , Plásticos/metabolismo , Polietileno/metabolismo , Polietileno/farmacologia , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese
8.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894741

RESUMO

PsbS is one of the key photoprotective proteins, ensuring the tolerance of the photosynthetic apparatus (PSA) of a plant to abrupt changes in irradiance. Being a component of photosystem II, it provides the formation of quenching centers for excited states of chlorophyll in the photosynthetic antenna with an excess of light energy. The signal for "turning on" the photoprotective function of the protein is an excessive decrease in pH in the thylakoid lumen occurring when all the absorbed light energy (stored in the form of transmembrane proton potential) cannot be used for carbon assimilation. Hence, lumen-exposed protonatable amino acid residues that could serve as pH sensors are the essential components of PsbS-dependent photoprotection, and their pKa values are necessary to describe it. Previously, calculations of the lumen-exposed protonatable residue pKa values in PsbS from spinach were described in the literature. However, it has recently become clear that PsbS, although typical of higher plants and charophytes, can also provide photoprotection in green algae. Namely, the stress-induced expression of PsbS was recently shown for two green microalgae species: Chlamydomonas reinhardtii and Lobosphaera incisa. Therefore, we determined the amino acid sequence and modeled the three-dimensional structure of the PsbS from L. incisa, as well as calculated the pKa values of its lumen-exposed protonatable residues. Despite significant differences in amino acid sequence, proteins from L. incisa and Spinacia oleracea have similar three-dimensional structures. Along with the other differences, one of the two pH-sensing glutamates in PsbS from S. oleracea (namely, Glu-173) has no analogue in L. incisa protein. Moreover, there are only four glutamate residues in the lumenal region of the L. incisa protein, while there are eight glutamates in S. oleracea. However, our calculations show that, despite the relative deficiency in protonatable residues, at least two residues of L. incisa PsbS can be considered probable pH sensors: Glu-87 and Lys-196.


Assuntos
Clorófitas , Microalgas , Sequência de Aminoácidos , Microalgas/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Clorófitas/metabolismo , Concentração de Íons de Hidrogênio , Glutamatos , Complexos de Proteínas Captadores de Luz/metabolismo
9.
Physiol Plant ; 175(5): e13998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882279

RESUMO

Proper short- and long-term acclimation to different growth light intensities is essential for the survival and competitiveness of plants in the field. High light exposure is known to induce the down-regulation and photoinhibition of photosystem II (PSII) activity to reduce photo-oxidative stress. The xanthophyll zeaxanthin (Zx) serves central photoprotective functions in these processes. We have shown in recent work with different plant species (Arabidopsis, tobacco, spinach and pea) that photoinhibition of PSII and degradation of the PSII reaction center protein D1 is accompanied by the inactivation and degradation of zeaxanthin epoxidase (ZEP), which catalyzes the reconversion of Zx to violaxanthin. Different high light sensitivity of the above-mentioned species correlated with differential down-regulation of both PSII and ZEP activity. Applying light and electron microscopy, chlorophyll fluorescence, and protein and pigment analyses, we investigated the acclimation properties of these species to different growth light intensities with respect to the ability to adjust their photoprotective strategies. We show that the species differ in phenotypic plasticity in response to short- and long-term high light conditions at different morphological and physiological levels. However, the close co-regulation of PSII and ZEP activity remains a common feature in all species and under all conditions. This work supports species-specific acclimation strategies and properties in response to high light stress and underlines the central role of the xanthophyll Zx in photoprotection.


Assuntos
Arabidopsis , Luz , Oxirredutases/metabolismo , Xantofilas/metabolismo , Zeaxantinas/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Luteína/metabolismo , Arabidopsis/metabolismo , Aclimatação , Clorofila/metabolismo , Fotossíntese
10.
Physiol Plant ; 175(4): e13981, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616008

RESUMO

Potassium ions enhance photosynthetic tolerance to salt stress. We hypothesized that potassium ions, by minimizing the trans-thylakoid proton diffusion potential difference, can alleviate over-reduction of the photosynthetic electron transport chain and maintain the functionality of the photosynthetic apparatus. This study investigated the effects of exogenous potassium on the transcription level and activity of proteins related to the photosynthetic electron-transport chain of tobacco seedlings under salt stress. Salt stress retarded the growth of seedlings and caused an outflow of potassium ions from the chloroplast. It also lowered qP (indicator of the oxidation state of QA , the primary quinone electron acceptor in Photosystem II (PSII) and YPSII (average photochemical yield of PSII in the light-adapted state) while increasing YNO+NF (nonregulatory energy dissipation in functional and nonfunctional PSII), accompanied by decreased expression of most light-harvesting, energy-transduction, and electron-transport genes. However, exogenous potassium prevented these effects due to NaCl. Interestingly, lincomycin (an inhibitor of the synthesis of chloroplast-encoded proteins in PSII) significantly diminished the alleviation effect of exogenous potassium on salt stress. We attribute the comprehensive NaCl-induced downregulation of transcription and photosynthetic activities to retrograde signaling induced by reactive oxygen species. There probably exist at least two types of retrograde signaling induced by reactive oxygen species, distinguished by their sensitivity to lincomycin. Exogenous potassium appears to exert its primary effect by ameliorating the trans-thylakoid proton diffusion potential difference via a potassium channel, thereby accelerating ATP synthesis and carbon assimilation, alleviating over-reduction of the photosynthetic electron transport chain, and maintaining the functionality of photosynthetic proteins.


Assuntos
Potássio , Prótons , Transporte de Elétrons , Espécies Reativas de Oxigênio , Cloreto de Sódio/farmacologia , Fotossíntese/fisiologia , Estresse Salino , Complexo de Proteína do Fotossistema II/metabolismo , Lincomicina/farmacologia
11.
Plant Cell Physiol ; 64(10): 1220-1230, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37556318

RESUMO

The generation of violaxanthin (Vx) de-epoxidase (VDE), photosystem II subunit S (PsbS) and zeaxanthin (Zx) epoxidase (ZEP) (VPZ) lines, which simultaneously overexpress VDE, PsbS and ZEP, has been successfully used to accelerate the kinetics of the induction and relaxation of non-photochemical quenching (NPQ). Here, we studied the impact of the overexpression of VDE and ZEP on the conversion of the xanthophyll cycle pigments in VPZ lines of Arabidopsis thaliana and Nicotiana tabacum. The protein amount of both VDE and ZEP was determined to be increased to about 3- to 5-fold levels of wild-type (WT) plants for both species. Compared to WT plants, the conversion of Vx to Zx, and hence VDE activity, was only marginally accelerated in VPZ lines, whereas the conversion of Zx to Vx, and thus ZEP activity, was strongly increased in VPZ lines. This indicates that the amount of ZEP but not the amount of VDE is a critical determinant of the equilibrium of the de-epoxidation state of xanthophyll cycle pigments under saturating light conditions. Comparing the two steps of epoxidation, particularly the second step (antheraxanthin to Vx) was found to be accelerated in VPZ lines, implying that the intermediate Ax is released into the membrane during epoxidation by ZEP.


Assuntos
Arabidopsis , Zeaxantinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Xantofilas/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Luz
12.
Nat Commun ; 14(1): 4681, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542031

RESUMO

Robust oxygenic photosynthesis requires a suite of accessory factors to ensure efficient assembly and repair of the oxygen-evolving photosystem two (PSII) complex. The highly conserved Ycf48 assembly factor binds to the newly synthesized D1 reaction center polypeptide and promotes the initial steps of PSII assembly, but its binding site is unclear. Here we use cryo-electron microscopy to determine the structure of a cyanobacterial PSII D1/D2 reaction center assembly complex with Ycf48 attached. Ycf48, a 7-bladed beta propeller, binds to the amino-acid residues of D1 that ultimately ligate the water-oxidising Mn4CaO5 cluster, thereby preventing the premature binding of Mn2+ and Ca2+ ions and protecting the site from damage. Interactions with D2 help explain how Ycf48 promotes assembly of the D1/D2 complex. Overall, our work provides valuable insights into the early stages of PSII assembly and the structural changes that create the binding site for the Mn4CaO5 cluster.


Assuntos
Cianobactérias , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Manganês/metabolismo , Oxigênio/metabolismo , Microscopia Crioeletrônica , Cianobactérias/metabolismo
13.
Ecotoxicol Environ Saf ; 263: 115245, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451097

RESUMO

Polybrominated diphenyl ether (PBDE) contamination is common in aquatic environments and can severely damage aquatic organisms. However, there is a lack of information on the response and self-adaptation mechanisms of these organisms. Chlorella pyrenoidosa was treated with 2,2',4,4'-tetrabromodiphenyl ether (BDE47), causing significant growth inhibition, pigment reduction, oxidative stress, and chloroplast atrophy. Photosynthetic damage contributed to inhibition, as indicated by Fv/Fm, Chl a fluorescence induction, photosynthetic oxygen evolution activity, and photosystem subunit stoichiometry. Here, Chl a fluorescence induction and quinone electron acceptor (QA-) reoxidation kinetics showed that the PSII donor and acceptor sides were insensitive to BDE47. Quantitative analyses of D1 and PsaD proteins illustrated that PSII and PSI complexes were the main primary targets of photosynthesis inhibition by BDE47. Significant modulation of PSII complex might have been caused by the potential binding of BDE47 on D1 protein, and molecular docking was performed to investigate this. Increased activation of antioxidant defense systems and photosystem repair as a function of exposure time indicated a positive resistance to BDE47. After a 5-day exposure, 23 % of BDE47 was metabolized. Our findings suggest that C. pyrenoidosa has potential as a bioremediator for wastewater-borne PBDEs and can improve our understanding of ecological risks to microalgae.


Assuntos
Chlorella , Éteres Difenil Halogenados , Éteres Difenil Halogenados/toxicidade , Éteres Difenil Halogenados/metabolismo , Chlorella/metabolismo , Simulação de Acoplamento Molecular , Fotossíntese , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo
14.
Plant Cell Environ ; 46(9): 2841-2850, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37332130

RESUMO

Hypoxia is a major emerging threat to coastal ecosystems, which is closely related to the decline in seagrass meadows, but its damage mechanism is still unclear. This study found that hypoxia at night significantly reduced the photosynthetic capacity of Enhalus acoroides after reillumination. Photosystem II (PSII) was damaged by high-light stress during daytime low-tide exposure, but high-light-damaged PSII of E. acoroides could recover part of its activity indark normoxic seawater to maintain the normal operation of photosynthesis after reillumination during the next day. However, hypoxia inhibited the recovery of damaged PSII under darkness. By transcriptomic analysis and inhibitor verification experiments, dark hypoxia was shown to inhibit respiration, thereby reducing ATP production and preventing ATP from being transported into chloroplasts, which, in turn, led to an insufficient supply of energy required for PSII to recover. This study demonstrated that hypoxia has several negative impacts on the photosynthetic apparatus of E. acoroides at night reducing photosynthetic capacity after reillumination, which may be an important factor leading to the decline of the seagrass meadows.


Assuntos
Ecossistema , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Hipóxia , Trifosfato de Adenosina
15.
Biochim Biophys Acta Bioenerg ; 1864(4): 148993, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321385

RESUMO

Phycobilisomes (PBSs), which are huge pigment-protein complexes displaying distinctive color variations, bind to photosystem cores for excitation-energy transfer. It is known that isolation of supercomplexes consisting of PBSs and photosystem I (PSI) or PBSs and photosystem II is challenging due to weak interactions between PBSs and the photosystem cores. In this study, we succeeded in purifying PSI-monomer-PBS and PSI-dimer-PBS supercomplexes from the cyanobacterium Anabaena sp. PCC 7120 grown under iron-deficient conditions by anion-exchange chromatography, followed by trehalose density gradient centrifugation. The absorption spectra of the two types of supercomplexes showed apparent bands originating from PBSs, and their fluorescence-emission spectra exhibited characteristic peaks of PBSs. Two-dimensional blue-native (BN)/SDS-PAGE of the two samples showed a band of CpcL, which is a linker protein of PBS, in addition to PsaA/B. Since interactions of PBSs with PSI are easily dissociated during BN-PAGE using thylakoids from this cyanobacterium grown under iron-replete conditions, it is suggested that iron deficiency for Anabaena induces tight association of CpcL with PSI, resulting in the formation of PSI-monomer-PBS and PSI-dimer-PBS supercomplexes. Based on these findings, we discuss interactions of PBSs with PSI in Anabaena.


Assuntos
Anabaena , Cianobactérias , Complexo de Proteína do Fotossistema I/metabolismo , Tilacoides/metabolismo , Anabaena/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Cianobactérias/metabolismo , Ficobilissomas/metabolismo , Ferro/metabolismo
16.
Int J Mol Sci ; 24(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37240058

RESUMO

The dinoflagellate algae, Symbiodiniaceae, are significant symbiotic partners of corals due to their photosynthetic capacity. The photosynthetic processes of the microalgae consist of linear electron transport, which provides the energetic balance of ATP and NADPH production for CO2 fixation, and alternative electron transport pathways, including cyclic electron flow, which ensures the elevated ATP requirements under stress conditions. Flash-induced chlorophyll fluorescence relaxation is a non-invasive tool to assess the various electron transport pathways. A special case of fluorescence relaxation, the so-called wave phenomenon, was found to be associated with the activity of NAD(P)H dehydrogenase (NDH) in microalgae. We showed previously that the wave phenomenon existed in Symbiodiniaceae under acute heat stress and microaerobic conditions, however, the electron transport processes related to the wave phenomenon remained unknown. In this work, using various inhibitors, we show that (i) the linear electron transport has a crucial role in the formation of the wave, (ii) the inhibition of the donor side of Photosystem II did not induce the wave, whereas inhibition of the Calvin-Benson cycle accelerated it, (iii) the wave phenomenon was related to the operation of type II NDH (NDH-2). We therefore propose that the wave phenomenon is an important marker of the regulation of electron transport in Symbiodiniaceae.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/metabolismo , Fluorescência , Complexo de Proteína do Fotossistema I/metabolismo , Fotossíntese/fisiologia , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Dinoflagellida/metabolismo , Trifosfato de Adenosina/metabolismo , Clorofila/metabolismo
17.
Plant Physiol ; 192(4): 2656-2671, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37202365

RESUMO

In thylakoid membranes, photosystem II (PSII) monomers from the stromal lamellae contain the subunits PsbS and Psb27 (PSIIm-S/27), while PSII monomers (PSIIm) from granal regions lack these subunits. Here, we have isolated and characterized these 2 types of PSII complexes in tobacco (Nicotiana tabacum). PSIIm-S/27 showed enhanced fluorescence, the near absence of oxygen evolution, and limited and slow electron transfer from QA to QB compared to the near-normal activities in the granal PSIIm. However, when bicarbonate was added to PSIIm-S/27, water splitting and QA to QB electron transfer rates were comparable to those in granal PSIIm. The findings suggest that the binding of PsbS and/or Psb27 inhibits forward electron transfer and lowers the binding affinity for bicarbonate. This can be rationalized in terms of the recently discovered photoprotection role played by bicarbonate binding via the redox tuning of the QA/QA•- couple, which controls the charge recombination route, and this limits chlorophyll triplet-mediated 1O2 formation. These findings suggest that PSIIm-S/27 is an intermediate in the assembly of PSII in which PsbS and/or Psb27 restrict PSII activity while in transit using a bicarbonate-mediated switch and protective mechanism.


Assuntos
Bicarbonatos , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Bicarbonatos/metabolismo , Tilacoides/metabolismo , Transporte de Elétrons , Oxirredução
18.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982664

RESUMO

Cyclic electron flow around photosystem I (CEF-PSI) is shown to be an important protective mechanism to photosynthesis in cotton leaves. However, it is still unclear how CEF-PSI is regulated in non-foliar green photosynthetic tissues such as bracts. In order to learn more about the regulatory function of photoprotection in bracts, we investigated the CEF-PSI attributes in Yunnan 1 cotton genotypes (Gossypium bar-badense L.) between leaves and bracts. Our findings demonstrated that cotton bracts possessed PROTON GRADIENT REGULATION5 (PGR5)-mediated and the choroplastic NAD(P)H dehydrogenase (NDH)-mediated CEF-PSI by the same mechanism as leaves, albeit at a lower rate than in leaves. The ATP synthase activity of bracts was also lower, while the proton gradient across thylakoid membrane (ΔpH), rate of synthesis of zeaxanthin, and heat dissipation were higher than those of the leaves. These results imply that cotton leaves under high light conditions primarily depend on CEF to activate ATP synthase and optimize ATP/NADPH. In contrast, bracts mainly protect photosynthesis by establishing a ΔpH through CEF to stimulate the heat dissipation process.


Assuntos
Gossypium , Prótons , Transporte de Elétrons , Gossypium/genética , Gossypium/metabolismo , Elétrons , China , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Trifosfato de Adenosina , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo
19.
Plant J ; 114(6): 1385-1404, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36948885

RESUMO

Chilling stress seriously impairs photosynthesis and activates a series of molecular responses in plants. Previous studies have shown that ETHYLENE INSENSITIVE 3 (EIN3) and EIN3-like (SlEIL) proteins mediate ethylene signaling and reduce plant tolerance to freezing in tomato (Solanum lycopersicum). However, the specific molecular mechanisms underlying an EIN3/EILs-mediated photoprotection pathway under chilling stress are unclear. Here, we discovered that salicylic acid (SA) participates in photosystem II (PSII) protection via SlEIL2 and SlEIL7. Under chilling stress, the phenylalanine ammonia-lyase gene SlPAL5 plays an important role in the production of SA, which also induces WHIRLY1 (SlWHY1) transcription. The resulting accumulation of SlWHY1 activates SlEIL7 expression under chilling stress. SlEIL7 then binds to and blocks the repression domain of the heat shock factor SlHSFB-2B, releasing its inhibition of HEAT SHOCK PROTEIN 21 (HSP21) expression to maintain PSII stability. In addition, SlWHY1 indirectly represses SlEIL2 expression, allowing the expression of l-GALACTOSE-1-PHOSPHATE PHOSPHATASE3 (SlGPP3). The ensuing higher SlGPP3 abundance promotes the accumulation of ascorbic acid (AsA), which scavenges reactive oxygen species produced upon chilling stress and thus protects PSII. Our study demonstrates that SlEIL2 and SlEIL7 protect PSII under chilling stress via two different SA response mechanisms: one involving the antioxidant AsA and the other involving the photoprotective chaperone protein HSP21.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Complexo de Proteína do Fotossistema II/metabolismo , Ácido Salicílico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Ascórbico/metabolismo , Etilenos , Temperatura Baixa
20.
Cells ; 12(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36766818

RESUMO

Rhododendron chrysanthum (Rhododendron chrysanthum Pall.), an alpine plant, has developed UV-B resistance mechanisms and has grown to be an important plant resource with the responsive capacity of UV-B stress. Our study uses acetylated proteomics and proteome analysis, together with physiological measurement, to show the Rhododendron chrysanthum seedling's reaction to UV-B stress. Following a 2-day, 8-h radiation therapy, 807 significantly altered proteins and 685 significantly altered acetylated proteins were discovered. Significantly altered proteins and acetylated proteins, according to COG analysis, were mostly engaged in post-translational modification, protein turnover, and chaperone under UV-B stress. It indicates that protein acetylation modification plays an important role in plant resistance to UV-B. The experimental results show that photosynthesis was inhibited under UV-B stress, but some photosynthetic proteins will undergo acetylation modification, which can alleviate the UV-B damage of plants to a certain extent. These results will serve as the basis for more research into the intricate molecular mechanisms underlying plant UV-B adaptation.


Assuntos
Complexo de Proteína do Fotossistema II , Rhododendron , Complexo de Proteína do Fotossistema II/metabolismo , Raios Ultravioleta , Rhododendron/metabolismo , Proteômica , Fotossíntese , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA